
CS 537 Notes, Section #9: Message Systems

Up until now, discussion has been about communication using shared data. Messages provide

for communication without shared data. One process or the other owns the data, never two at

the same time.

This kinds of communication is used heavily in the parallel programming community (with

PVM and MPI).

Message = a piece of information that is passed from one process to another.

Mailbox = a place where messages are stored between the time they are sent and the time

they are received.

Operations:

 Send: place a message in a mailbox. If the mailbox is full, wait until there is enough

space in the mailbox.

 Receive: remove a message from a mailbox. If the mailbox is empty, then wait until a

message is placed in it.

Is there really no shared data?

There are two general styles of message communication:

 1-way: messages flow in a single direction (Unix pipes, or producer/consumer):

http://www.epm.ornl.gov/pvm/
http://www.mcs.anl.gov/mpi/index.html

 2-way: messages flow in circles (remote procedure call, or client/server):

Producer & consumer example:

Producer Consumer

int buffer1[1000];

while (1) {

 -- prepare buffer1 --

 mbox.send(&buffer1);

};

int buffer2[1000];

while (1) {

 mbox.receive(&buffer2);

 -- process buffer2 --

};

Note that buffer recycling is implicit, whereas it was explicit in the semaphore

implementation.

Client & Server example:

Client Server

int buffer1[1000];

mbox1.send("read rutabaga");

mbox2.receive(&buffer);

int buffer2[1000];

int command[1000];

mbox1.receive(&command);

-- decode command --

-- read file into buffer2 --

mbox2.send(&buffer2);

Note that this looks a lot like a procedure call&return. Explain the various analogs between

procedure calls and message operations:

 Parameters:

 Result:

 Name of procedure:

 Return address:

Why use messages?

 Many kinds of applications fit into the model of processing a sequential flow of

information, including all of the Unix filters.

 The component parties can be totally separate, except for the mailbox:

o Less error-prone, because no invisible side effects: no process has access to

another's memory.

o They might not trust each other (OS vs. user).

o They might have been written at different times by different programmers who

knew nothing about each other.

o They might be running on different processors on a network, so procedure

calls are out of the question.

Which is more powerful, messages or monitors?

Message systems vary along several dimensions:

 Relationship between mailboxes and processes:

o One mailbox per process, use process name in send and receive (simple but

restrictive) [RC4000].

o No strict mailbox-process association, use mailbox name (can have multiple

mailboxes per process, can pass mailboxes from process to process, but

trickier to implement) [Unix].

 Extent of buffering:

o Buffering (more efficient for large transfers when sender and receiver run at

varying speeds).

o None -- rendezvous protocols (simple, OK for call-return type communication,

know that message was received).

 Conditional vs. unconditional ops:

o Unconditional receive: return message if mailbox is not empty, otherwise wait

until message arrives.

o Conditional receive: return message if mailbox is not empty, otherwise return

special "empty" value.

o Unconditional send: wait until mailbox has space.

o Conditional send: return "full" if no space in mailbox (message is discarded).

What happens with rendezvous protocols and conditional operations?

 Additional forms of waiting:

o Almost all systems allow many processes to wait on the same mailbox at the

same time. Messages get passed to processes in order.

o A few systems allow each process to wait on several mailboxes at once. The

process gets the first message to arrive on any of the mailboxes. This is

actually quite useful (give Caesar as an example).

 Constraints on what gets passed in messages:

o None: just a stream of bytes (Unix pipes).

o Enforce message boundaries (send and receive in same chunks).

o Protected objects (e.g. a token for a mailbox).

How would the following systems fall into the above classifications?

 Condition variables

 Unix pipes

Copyright © 1997, 2002, 2008 Barton P. Miller

Non-University of Wisconsin students and teachers are welcome to print these notes their

personal use. Further reproduction requires permission of the author.

